Hossainey MRH, Hauser KA, Garvey CN, Kalia N, Garvey JM, Grayfer L. (2022) A perspective into the relationships between amphibian (Xenopus laevis) myeloid cell subsets. Philosophical Transactions of the Royal Society B in press.
Kalia Np, Hauser Kg, Burton S, Hossainey MRH, Zelle M, Horb ME, Grayfer L. Endogenous retroviruses augment amphibian (Xenopus laevis) tadpole antiviral protection. Journal of Virology 96, doi: 10.1128/jvi.00634-22.
Hossainey MRH, Yaparla A, Hauser K, Moore TE, Grayfer L. (2021) The roles of amohibian (Xenopus laevis) macrophages during chronic Frog Virus 3 infections. Viruses 13, 2299.
Hauser K, Singer JC, Hossainey MRH, Moore TE, Wendel ES, Yaparla A, Kalia N, Grayfer L. (2021) Amphibian (Xenopus laevis) Tadpoles and Adult Frogs Differ in Their Antiviral Responses to Intestinal Frog Virus 3 Infections. Frontiers in Immunology 12, 737403.
Yaparla A, Koubourli D, Popovic M, Grayfer, L. (2020) Exploring the relationships between amphibian (Xenopus laevis) myeloid cell subsets. Developmental and Comparative Immunology 113, 103798.
Hauser K, Popovic M, Yaparla A, Koubourli DV, Reeves P, Batheja A, Webb R, Forzán M, Grayfer L. (2020) Discovery of granulocyte-lineage cells in the skin of the amphibian Xenopus laevis. FACETS 5, 571.
Yaparla A, Reeves P, Grayfer L. (2020) Myelopoiesis of the amphibian Xenopus laevis is segregated to the bone marrow, away from their hematopoietic peripheral liver. Front Immunol 10, 3015.
Popovic M, Yaparla A, Paquin-Proulx D, Koubourli DV, Webb R, Firmani M, Grayfer L. (2019) Colony-stimulating factor-1- and interleukin-34-derived macrophages differ in their susceptibility to Mycobacterium marinum. J Leuk Biol 106, 1257-1269..
Yaparla A, Docter-Loeb H, Melnyk MLS, Batheja A, Grayfer L. (2019) The amphibian (Xenopus laevis) colony-stimulating factor-1 and interleukin-34-derived macrophages possess disparate pathogen recognition capacities. Dev Comp Immunol 98, 89-97.
Paquin-Proulx D, Greenspun BC, Kitchen SM, Saraiva Raposo RA, Nixon DF, Grayfer L. (2018) Human interleukin-34-derived macrophages have increased resistance to HIV-1 infection. Cytokine 111, 272-277.
Koubourli DV, Yaparla A, Popovic M, Grayfer L. (2018) Amphibian (Xenopus laevis) interleukin-8: a perspective on the evolutionary divergence of granulocyte chemotaxis. J Leuk Biol 9, 2058-2071.
Wendel ES, Yaparla A, Melnyk MLS, Koubourli DV, Grayfer L. (2018) Amphibian (Xenopus laevis) tadpoles and adult frogs differ in their use of expanded repertoires of type I and type III interferon cytokines. Viruses 10, 372.
Grayfer L, Kerimoglu B, Hodgkinson JW, Belosevic M. (2018) Mechanisms of Fish Macrophage Antimicrobial Immunity Front Immune 9: 1105.
Yaparla A, Popovic M, Grayfer L. (2018) Differentiation-dependent antiviral capacities of amphibian (Xenopus laevis) macrophages. J Biol Chem 293, 1736.
Yaparla A, Grayfer L. (2018) Isolation and culture of amphibian (Xenopus laevis) sub-capsular liver and bone marrow cells. Methods in Molecular Biology,Springer Nature in press.
Grayfer L.(2017) Eilcitation of Xenopus laevistadpole and adult frog peritoneal leukocytes. Cold Spring Harb Protoc.doi: 10.1101/pdb.prot097642.
Koubourli DV, Wendel ES, Ghaul JR, Grayfer L. (2017) Immune roles of amphibian (Xenopus laevis) tadpole granulocytes during Frog Virus 3 ranavirus infections. Dev Comp Immunol72, 112.
Wendel ES, Yaparla A, Koubourli DV, Grayfer L. (2017) Amphibian (Xenopus laevis) tadpoles and adult frogs mount distinct interferon responses to the Frog Virus 3 ranavirus. Virol 503, 12.
Yaparla A, Koubourli DV, Wendel ES, Grayfer L. (2017) Immune System Organs of Amphibians. In Reference Module in Life Sciences (LIFE). doi 10.1016/B978-0-12-809633-8.12183-1.
Yaparla A, Wendel E, Grayfer L. (2016) The unique myelopoiesis strategy of the amphibian Xenopu laevis. Dev Comp Immunol 63, 136.
Grayfer L, Robert J. (2016) Amphibian macrophage development and antiviral defenses. Dev Comp Immunol 58: 60.
Kalia Np, Hauser Kg, Burton S, Hossainey MRH, Zelle M, Horb ME, Grayfer L. Endogenous retroviruses augment amphibian (Xenopus laevis) tadpole antiviral protection. Journal of Virology 96, doi: 10.1128/jvi.00634-22.
Hossainey MRH, Yaparla A, Hauser K, Moore TE, Grayfer L. (2021) The roles of amohibian (Xenopus laevis) macrophages during chronic Frog Virus 3 infections. Viruses 13, 2299.
Hauser K, Singer JC, Hossainey MRH, Moore TE, Wendel ES, Yaparla A, Kalia N, Grayfer L. (2021) Amphibian (Xenopus laevis) Tadpoles and Adult Frogs Differ in Their Antiviral Responses to Intestinal Frog Virus 3 Infections. Frontiers in Immunology 12, 737403.
Yaparla A, Koubourli D, Popovic M, Grayfer, L. (2020) Exploring the relationships between amphibian (Xenopus laevis) myeloid cell subsets. Developmental and Comparative Immunology 113, 103798.
Hauser K, Popovic M, Yaparla A, Koubourli DV, Reeves P, Batheja A, Webb R, Forzán M, Grayfer L. (2020) Discovery of granulocyte-lineage cells in the skin of the amphibian Xenopus laevis. FACETS 5, 571.
Yaparla A, Reeves P, Grayfer L. (2020) Myelopoiesis of the amphibian Xenopus laevis is segregated to the bone marrow, away from their hematopoietic peripheral liver. Front Immunol 10, 3015.
Popovic M, Yaparla A, Paquin-Proulx D, Koubourli DV, Webb R, Firmani M, Grayfer L. (2019) Colony-stimulating factor-1- and interleukin-34-derived macrophages differ in their susceptibility to Mycobacterium marinum. J Leuk Biol 106, 1257-1269..
Yaparla A, Docter-Loeb H, Melnyk MLS, Batheja A, Grayfer L. (2019) The amphibian (Xenopus laevis) colony-stimulating factor-1 and interleukin-34-derived macrophages possess disparate pathogen recognition capacities. Dev Comp Immunol 98, 89-97.
Paquin-Proulx D, Greenspun BC, Kitchen SM, Saraiva Raposo RA, Nixon DF, Grayfer L. (2018) Human interleukin-34-derived macrophages have increased resistance to HIV-1 infection. Cytokine 111, 272-277.
Koubourli DV, Yaparla A, Popovic M, Grayfer L. (2018) Amphibian (Xenopus laevis) interleukin-8: a perspective on the evolutionary divergence of granulocyte chemotaxis. J Leuk Biol 9, 2058-2071.
Wendel ES, Yaparla A, Melnyk MLS, Koubourli DV, Grayfer L. (2018) Amphibian (Xenopus laevis) tadpoles and adult frogs differ in their use of expanded repertoires of type I and type III interferon cytokines. Viruses 10, 372.
Grayfer L, Kerimoglu B, Hodgkinson JW, Belosevic M. (2018) Mechanisms of Fish Macrophage Antimicrobial Immunity Front Immune 9: 1105.
Yaparla A, Popovic M, Grayfer L. (2018) Differentiation-dependent antiviral capacities of amphibian (Xenopus laevis) macrophages. J Biol Chem 293, 1736.
Yaparla A, Grayfer L. (2018) Isolation and culture of amphibian (Xenopus laevis) sub-capsular liver and bone marrow cells. Methods in Molecular Biology,Springer Nature in press.
Grayfer L.(2017) Eilcitation of Xenopus laevistadpole and adult frog peritoneal leukocytes. Cold Spring Harb Protoc.doi: 10.1101/pdb.prot097642.
Koubourli DV, Wendel ES, Ghaul JR, Grayfer L. (2017) Immune roles of amphibian (Xenopus laevis) tadpole granulocytes during Frog Virus 3 ranavirus infections. Dev Comp Immunol72, 112.
Wendel ES, Yaparla A, Koubourli DV, Grayfer L. (2017) Amphibian (Xenopus laevis) tadpoles and adult frogs mount distinct interferon responses to the Frog Virus 3 ranavirus. Virol 503, 12.
Yaparla A, Koubourli DV, Wendel ES, Grayfer L. (2017) Immune System Organs of Amphibians. In Reference Module in Life Sciences (LIFE). doi 10.1016/B978-0-12-809633-8.12183-1.
Yaparla A, Wendel E, Grayfer L. (2016) The unique myelopoiesis strategy of the amphibian Xenopu laevis. Dev Comp Immunol 63, 136.
Grayfer L, Robert J. (2016) Amphibian macrophage development and antiviral defenses. Dev Comp Immunol 58: 60.